
0018-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 106, No. 5, May 2018 | Proceedings of the IEEE 829

ABSTRACT | Detecting ªhotspotsº and ªanomaliesº is a recurring

problem with a wide range of applications, such as social network

analysis, epidemiology, finance, andbiosurveillance, amongothers.

Networks are a common abstraction in these applications for

representing complex relationships. Typically, these networks are

dynamic-, i.e., they evolve over time. A number of methods have

beenproposedforanomalydetectioninsuchdynamicnetworkdata

sets, which are primarily based on changes in network properties.

We provide a survey of the various formulations of anomaly

detection in dynamic networks with a focus on ªwindow-basedº

methods. Window-based methods first define a time window of

past network snapshots tomodel normal behavior and thenmark a

snapshot as anomalous if it has significantly different patterns from

those observed in the time window. We describe two classes of

techniques: 1) generalizations of Steiner connectivity; and 2) dense

subgraph mining. Both have been used extensively in window-

based graph anomaly detection. We summarize the key problem

formulations that have been studied using these approaches, and

we describe details of some of themain techniques.

KEYWORDS | Approximation algorithms; dense subgraph

mining; graph anomaly detection; graph mining; parameter-

ized complexity; scan statistics
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I . INTRODUCTION

Networks (or graphs) have become a popular abstraction
for representing complex relationships in diverse applica-
tions, as diverse as social networks, systems biology, com-
puter security, and Ônance [2], [31], [36], [61]. Anomaly
detection is the task of Ônding a part of the graph (i.e.,
nodes, edges, subgraphs) where some “strange” or “unu-
sual” behavior is taking place. What constitutes strange
behavior depends on the nature of the network, and there
has been a lot of work on considering different kinds of
network properties. For instance, anomalies have been
deÔned in terms of the edges of the network (i.e., anoma-
lous interactions between nodes) [20], [49], [67], [78],
[101], node features (i.e., members of the network who
behave differently compared to other members) [4], [12],
[91], and characteristics of different kinds of subgraphs
[75], [94]. Anomalies have been considered in both static
graphs and dynamic graphs, in which the nodes/edges or
characteristics of nodes/edges (e.g., weights, features)
change over time. See Fig. 1 for an illustration.

There has been extensive research on all these aspects,
and there are multiple surveys that summarize the different
kinds of approaches that have been considered in the litera-
ture, a lot of which are application driven. Akoglu et al. [5]
provide a comprehensive survey of the approaches used for
anomaly detection in static and temporal networks, as well
as a taxonomy for this broad area of research. Shortly after,
Ranshous et al. [82] “zoomed in” on temporal networks
and gave a more detailed comparison of existing methods
for these types of anomalies. However, these surveys do not
go into signiÔcant detail about the technical methods used.
We will not attempt to replicate these surveys. Instead, we
brieÕy summarize the main categories of the approaches
used; then, we delve deeper into two classes of meth-
ods, which rely on interesting graph theoretic properties,
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namely, 1) generalizations of Steiner connectivity; and 2)
dense subgraphs. These problems are NP-hard, in general, and
the methods based on these properties rely on rigorous algo-
rithms and heuristics for Ônding near-optimal solutions. We
describe some of the key families of techniques that have been
developed and used in a number of applications. In particular,
we discuss techniques based on the notion of Ôxed-parameter
tractability for NP-hard problems [34], where the goal is to
develop algorithms with running time O(a kq(n)), where a is
a small constant, k is a parameter, and q(n) is a polynomial
on n, the problem size. In other words, the complexity scales
exponentially with the parameter k, but polynomially with the
problem size. Such methods provide a promising way to deal
with the NP-hardness of these optimization problems, but they
have not been studied as much in the graph mining literature.

A. Main Categories of Graph Anomaly Research

We broadly follow the taxonomy of [5] and summarize it
here. We Ôrst describe some graph theoretical notation that
is used in the discussion below. A static graphG= (V,E) con-
sists of a set V of nodes (which represent entities in an appli-
cation, e.g., people in a social network) and a set E ⊆ V× V of
edges (which represent relationships between the nodes). In
general, graphs are dynamic and change over time. We rep-
resent this by G= {G(1),G(2),…,G(T)}, where G(t) (V(t), E(t))
is the graph at time t, also referred to as a “snapshot.” In
many applications, V(t) = V for all t, i.e., the node set is
unchanged, but the edge set E(t) changes as a result of inser-
tions or deletions. Each edge e = (u, v) in E(t) has a weight
w(t) (u, v) indicating the strength of the interaction between
u and v at that time step—this can be positive or negative, in
which case, it is referred to as a signed network. We drop the
superscript indicating time when considering static graphs.

1) Static Graphs: Informally, the problem of anomaly
detection on a static graph G calls for Ônding subgraphs V ′
⊆ V that are signiÔcantly different than most of the “normal”
patterns observed in that graph. There are a number of ways
to formalize such a difference. One line of work uses struc-
tural properties of a network; these methods deÔne anoma-
lies as subgraphs whose structure is different than the rest of
the graph. For instance, the OddBall approach [4] uses a set
of node-level features, such as the degree and local cluster-
ing, and it identiÔes a node as anomalous if the features differ

signiÔcantly from the overall distribution. Another line of
work leverages on the community of a graph to Ônd anoma-
lies. A community in a graph is loosely deÔned as a subset
V ′⊆ V of nodes that have many edges within V ′(i.e., they
are densely connected) and few edges to other nodes of the
graph, i.e., to V "V ′. The community-based methods deÔne
anomalies as nodes or edges that do not clearly belong to any
community; rather, these nodes act as “bridges” and lie in the
boundary between two or more communities. An example of
a community-based method is the work of Sun et al. [95], who
consider communities based on random walks and deÔne a
link as anomalous if it connects nodes that have low likeli-
hood of being in the same community.

Nodes or edges of a graph may also have attributes. For
example, in a social network, attributes of a person (i.e., a
node) would be their hometown, occupation, political and
religious views, etc. This additional information may be
used to deÔne anomalous behavior. A well-known attrib-
ute-based method is the work of Noble and Cook [75]. The
authors use a minimum description length (MDL) approach
for Ônding frequent subgraphs—subgraphs with low com-
pression cost—when each node has a label. The idea is that
the opposite of “frequent” is anomalous, so graphs that are
hard to compress are labeled as anomalous.

2) Dynamic Graphs: The problem of anomaly detection
in a dynamic or time-evolving graph G = {G(1),G(2),…,G(T)}
may be summarized as follows: Ônd 1) a time stamp t or a
time interval [t1, t2], where an event or change point occurs;
and 2) the subgraph V′⊆ V, where this change occurs. Akoglu
et al. [5] split the different approaches to anomaly detection in
dynamic graphs into four categories.

• Feature based, which involve creating a summary for
each snapshot (e.g., by converting it to a vector) and
comparing consecutive snapshots using a distance
function on the summaries. Distance above a certain
threshold between two snapshots indicates a change
point or anomaly between them [3].

• Decomposition based, which operate on the adjacency
matrix representation of each snapshot, e.g., [3] and
[96], or on the tensor representation of the full net-
work time series, e.g., [11] and [58]. These methods
use the eigenvectors or singular vectors of these rep-
resentations to interpret anomalous events.

Fig. 1. Anomaly detection based on Steiner connectivity. Four snapshots of a network of sensors. A blue node (sensor) indicates pollution
at that part of the network. However, individual sensors may become active due to noise. This is the case at times 2 and 3. However, time 4
shows a large subgraph of active sensors. This event detection problem can be cast as finding a connected subgraph with a high proportion
of blue nodes*possibly connected by some white nodes. In this case, we would like to detect the graph circled in red at time 4.
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• Community based, which deÔne anomalies as snap-
shots in the time series whose community structure
differs signiÔcantly from snapshots in the recent past.
An example is [77], who propose a Bayesian model of
community structure and a statistical test to detect
change points in dynamic graphs. They use the snap-
shots in a time window [t − W, t] to infer the commu-
nity structure of the graph, and compare it with the
community structure of snapshot t + 1, evaluating the
signiÔcance by computing a Bayes factor.

• Window based, which deÔne a time window of past
snapshots to model normal behavior. Subsequent
snapshots are marked as anomalous if they differ sig-
niÔcantly from the patterns observed in the time win-
dow. Usually, in this category, the anomaly detection
task is posed as an optimization problem where the
goal is to Ônd the subgraph(s) that maximizes some
distance function between the current snapshot and
the time window. Some examples include [27], [28],
[78], [92], and [101].

B. Our Focus

We focus on the approach of window-based methods for
anomaly detection in dynamic graphs, which are based on
two classes of graph theoretical notions: 1) Ônding Steiner
subgraphs with certain properties; and 2) Ônding dense sub-
graphs. Our survey consists of two parts, corresponding to
these two approaches for Ônding anomalous subgraphs. For
each part, we describe the problem formulations and brieÕy
explain why the problems are hard in networks. We then dis-
cuss the main techniques and heuristics that have been devel-
oped for these problems and key applications to domains like

biology, fraud detection, cybersecurity, public health, and
bioinformatics. We Ônish with some conclusions and open
questions. Fig. 2 provides a graphical summary of this survey.

II . ANOMALY DETECTION BASED ON
STEINER CONNECTIVITY

One popular way of formalizing anomaly detection is through
the family of Steiner connectivity problems, a general class
of optimization problems with connectivity constraints. In
Steiner connectivity problems, we have some nodes of inter-
est—usually called terminals—that we would like to connect
to each other. In order to do so, we may need to include nodes
or edges that are not of interest to us—these are referred to as
Steiner nodes. The challenge is to connect the terminals with
as little extra overhead (i.e., few Steiner nodes) as possible.
The basic Steiner subgraph formulations deÔne a linear cost
objective—e.g., minimize the sum of weights of the edges
used in the solution. For anomaly detection, these formula-
tions have been generalized to more complex objective func-
tions in the form of network scan statistics.

The Ôrst proposed problem in the Steiner family is the
minimum Steiner tree problem [52], where the goal is con-
necting a given set of terminal nodes in a graph using a tree
of minimum cost.

Problem 1 (Minimum Steiner Tree): Given a graph G(V,E)
with edge costs or penalties w : E → ℝ+ and a set of termi-
nal nodes S ⊂ V, Ônd a connected subgraph T(V′, E′) that
includes all the terminals, i.e., S ⊆ V′, and minimizes the
cost or total weight of the edges ∑

e∈E′w(e).

There are many variations of this basic problem. See [48]
for a compendium of Steiner connectivity formulations. Here,

Fig. 2. Outline of our survey. We review problem formulations for graph anomaly detection based on Steiner connectivity and density.
An arrow A→ B indicates that problem B is a particular variant of problem A.
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wewill focus on the prize-collecting versions,which have been
used to model the anomaly detection task. The basic Steiner
connectivity problem requires all the terminal nodes to be
connected. The prize-collecting version relaxes this by con-
sidering a prize π(v) for each node v. The objective function
has two components: the sum of the prizes of the nodes not
included in the solution (the “lost prize”), and the cost of the
edges picked in the solution. There are two versions of these
problems, depending on the speciÔc objective function.

Problem 2 [Prize Collecting Steiner Tree (MinGW)]: Given
a graph G(V,E) with edge penalties w : E→ℝ+ and node
penalties π : V→ℝ+, Ônd a connected subgraph T(V′,E′) that
minimizes the cost of the tree plus the lost prize

∑
v∈V"V′

π (v) + ∑
e∈E′

w(e).

Problem 3 [Prize Collecting Steiner Tree (NetWorth)]:
Given a graph G(V,E) with edge penalties w : E→ℝ+ and
node prizes π : V→ℝ+, Ônd a connected subgraph T(V′, E′)
that maximizes the prize minus the cost of the tree

∑
v∈V′

π (v) − ∑
e∈E′

w(e).

1) Anomalies as Heavy Subgraphs: The models for graph
anomaly detection discussed in this section are all based on
the Steiner connectivity principle of Ônding connected sub-
graphs with high prize and as little cost as possible. Nodes or
edges that are deemed to be anomalous or interesting will be
assigned ahighprize,whereas normal or uninteresting oneswill
be assigned a low prize or even a penalty. The goal then becomes
Ônding an optimal Steiner subgraph as in Problems 2 and 3. The
formulations in this category differ on how the anomaly scores
are assigned. In Fig. 1, we show a generic example of the anom-
aly detection task modeled as a Steiner connectivity problem.

A. Models and Problem Formulations

1) Graph Scan Statistics: As observed in [92], scan sta-
tistics involve formalizing a notion of “anomalousness”
for a subset of data, and then scanning through the data to
efÔciently Ônd a subset that optimizes an anomaly score.
Originally, scan statistics were developed for disease sur-
veillance in spatial data and involved Ônding simple regions,
such as disks [59], [66], [71], [72], [74]. Later, scan statistics
were extended to network data by considering scores for
connected subgraphs.

Given a graph G(V,E), we assume each node v ∈ V has
two associated values, which vary with time: 1) a baseline
count bt(v), which indicates the count that we expect to see
at the node v at time t, e.g., the number of people in a county
corresponding to node v; and 2) an event count or obser-
vation ct(v), which indicates how many occurrences of an
event of interest are seen at the node, e.g., the number of
cases of a disease in a county. For simplicity, we omit time in

our notation, but all the techniques presented below extend
easily to network streams.

The methodology of scan statistics formalizes anomaly
detection as a hypothesis testing problem. Under the null
hypothesis H0, it is “business as usual,” and the event counts
for all nodes are generated proportionally to their baseline
counts. Under the alternative hypothesis H1 (S), counts of a
majority of the vertices are generated (again) with rate pro-
portional to the baseline counts, but there exists a small con-
nected subset S ⊆ V of vertices for which the counts are gener-
ated at a higher rate than expected. Then, the goal is to Ônd a
set of vertices S that maximizes an appropriate scan statistic
function F(S) that compares event counts to baseline counts

F(S) = F(C(S),B(S),θ)

where C(S) = ∑v∈S c(v) is the total event count or weight
of S, B(S) = ∑v∈S b(v) is the baseline count of the set, and
θ represents possible additional arguments to F.

Depending on the assumptions that are satisÔed by the
data, there are two broad types of scan statistics: parametric
and nonparametric.

Parametric scan statistics assume that counts observed
at each node are generated from some parameterized
distribution [27], [29], [33], [53], [64], [66], [74], [79],
[83], [99]. Common choices are distributions from the
exponential family, such as Poisson or Normal, and the
scan statistic is typically the log-likelihood ratio

F(S) = log(
P(C(S) | H1 (S))____________
P(C(S) | H0) ) .

A well-known example of parametric scan statistics is
the Kulldorff statistic commonly used in disease surveil-
lance [35], [59], [60], [73], which is deÔned as

C(S) log(
C(S)____
B(S)) + (C(V) − C(S))

≈ log(
C(V) − C(S)_________
B(V) − B(S)) −C(V) log(

C(V)_____
B(V))

with θ= (C(V),B(V)). The extension to temporal data is eas-
ily obtained by deÔning B(S) and C(S) as the aggregate base-
line and event counts over some time window T : B(S) =
∑ i=1

T ∑v∈S bt(v) and C(S) = ∑ i=1
T ∑v∈S ct(v). We refer to

[59], [73], and [81] for discussion on the strengths and limi-
tations of parametric scan statistics.

Nonparametric scan statistics do not assume an underly-
ing distribution or process on the graph. Instead, they Ôrst
estimate a p-value for each vertex based on empirical calibra-
tion by comparing the current features of this vertex—ct(v)
and bt(v)—with its features in the historical data—ct−T,…,
ct−1(v) and bt−T,…,bt−1(v) for some time window size T.

Under mild assumptions [28, Th. 1], the calibrated
p-values are uniform on [0, 1] if there is no anomalous
activity among them. The problem of anomaly detection
is then formalized as a hypothesis testing problem for
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Bogdanov et al.model the anomaly detection task as the
following optimization problems.

Problem 6 [Heaviest Dynamic Subgraph (HDS)]: Given an
edge-evolving network (G,W,T ), the objective of the heavi-
est dynamic subgraph problem is to Ônd a temporal subgraph
(G′, [i, j]), over all possible subgraphsG′ofG and subintervals
[i, j] of T, such that score(G′,W, [i, j]) is maximized.

Problem 7 [Heaviest Subgraph (HS)]: The objective of
the heaviest subgraph problem for a given (G,w[t1,t2]) is to
Ônd a temporal subgraph G′of maximum score in a Ôxed
interval [t1, t2].

Intuitively, the goal is to Ônd a subgraph and time inter-
val where many of the edges have positive weight. However,
as usual in Steiner connectivity problems, we are willing to
include negative edges in the solution if it helps us to con-
nect two components of high positive weight and improve
on the objective function. Bogdanov et al. [20] note that
the HS problem is equivalent to NetWorth (Problem 3). In
Fig. 4, we show an example reduction from HS to NetWorth.
The main idea is to replace all the adjacent positive edges by
nodes of prize equal to the total edge weight and make the
remaining edges have positive weight.

In the HDS problem, we are interested in Ônding one
single subgraph and time interval that has the highest objec-
tive value. Mongiovì et al. consider an extension of the prob-
lem where we want to Ônd as many nonoverlapping heavy
temporal subgraphs as possible [69].

Problem 8 [SigniÔcant Anomalous Regions (SAR)]: Given
an edge-evolving network (G,W,T ) and a threshold τ, the
objective is to Ônd a set of regions (temporal subgraphs)
ℛ = {R1,R2,…,Rk} in decreasing order of scores, such that
the score of each region Ri, without considering the score
of positive edges overlapping with higher scoring regions,
is at least τ.

3) EventTree+: Another Steiner-based method was
recently proposed by Rozenshtein et al. [84]. The authors
deÔne activity networks, where each node v has a positive
prize π(v) and each edge e has a positive cost or distance
w(e). Node weights model the importance or intensity of
the activity at that node, for instance, the number of posts
madeby auser in a social network, andwe learn them froma
collectionofpastobservations.Thegoal is toÔndasubgraph
that optimizes the tradeoff between prize and distance. In
particular, the authors propose to Ônd a subset of nodes
S ⊆ V that minimizes

Table 1 Commonly-Used Scan Statistics Functions
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problem that Ônds the optimal NetWorth value with prob-
ability at least ϵ. The time complexity of the algorithm is
O((2e)km log(1/ϵ)) and thememory requirement isO(2kn).

We note that this parameterized complexity approach is
also applicable to the other problem formulations presented
in this section. We brieÕy describe the main ideas for the
case of nonparametric scan statistics from [22], using the
BJ scan statistic as an example. The Ôrst idea is that the BJ
statistic is an increasing function ofW(S) ifW(S)/|S|≥ α and
|S| is constant. Consider a coloring using a set K as before.
For a node v and subset of colors T ⊆ K, we let OPT(v,T) =
maxSW(S), where the maximization is over all connected
and colorful sets S ⊆ V, such that v ∈ S, |S| = |T|, and {col(u) :
u ∈ S} = T. In other words, we only consider a set S if each
node in the set has a distinct color from T. OPT(v,T) can
be computed by a dynamic program with the following
recurrence. For any node v and color s, OPT(v, {s}) = w(v) if
col(v) = s, else OPT(v,{s}) = −∞. If |T|≥ 2

OPT(v,T) = max
u:(u,v)∈E
T1,T2⊆T

{OPT((v,T1) + OPT((u,T2)}

where the maximum is over all partitions T1 ∪ T2= T and all
neighbors u of v. This can be used to obtain a bound similar
to Theorem II.1 for nonparametric scan statistics. The gen-
eral method can be extended to parametric scan statistics as
well, but additional information needs to be maintained in
the dynamic program.

Finally, Cadena et al. [22] design an efÔcient preprocess-
ing, referred to as a reÔnement step, which involves com-
pressing subsets of nodes into “supernodes.” The size of a set
S after reÔnement is determined in terms of the nodes and
supernodes in it. This new size is called effective size, and,
in practice, it is signiÔcantly smaller than the original size
of S, making it possible to discover anomalous subgraphs
with hundreds or thousands of nodes while keeping the
parameter k in the single digits.

3) Heuristics: Besides the two general approaches dis-
cussed above, many problem-speciÔc heuristics have been
proposed. These algorithms are designed to be scalable
and exhibit good empirical performance; however, in most
cases, no quality guarantees are known for these methods.

Heuristic algorithms for parametric scan statistic opti-
mization include a) a simulated annealing approach that
is based on a concept of “non-compactness” for penalizing
clusters [35]; b) the additive GraphScan algorithm, which
connects clusters based on shortest path distances [92];
c) sparse learning method based on edge-lasso regulariza-
tion [88]; d) spectral scan method based on graph Laplacian
regularization [89]; e) submodular optimization algorithm
based on Lovasz extensions [87]; and f) semideÔnite pro-
gramming algorithms based on linear matrix inequalities for
characterizing the connectivity of subsets [6], [80], [81].

Nonparametric scan statistics in networks have only
been explored recently. Chen and Neill present NPHGS, a
fast iterative heuristic algorithm to optimize nonparamet-
ric scan statistics on general graphs [28]. NPHGS builds an
anomalous connected subgraph S by starting at a signiÔcant
node v and trying to add neighbors of v to S if it increases the
target scan statistic F(S). Zhou and Chen [104] take a differ-
ent approach based on sparse optimization. They propose an
extension of the projected gradient descent algorithm [15]
that respects the connectivity constraints.

For the HDS problem, Bogdanov et al. [20] propose
Meden. The idea behind their algorithm is to Ônd a solu-
tion to HDS by repeatedly solving the HS problem (i.e., for
a Ôxed subinterval). We can Ônd a solution to HS using the
GW algorithm, but the authors propose a heuristic called
TopDown, with running time linear in the number of edges.
Further, naively solving HS for all the possible subintervals
would take time proportional to O(|T |2); see Problem 6
for notation. The authors propose an aggregation scheme
that makes it possible to process all the subintervals in time
O(|T |log(|T |)), with an extra overhead of O(log(|T |)) for
running the aggregation procedure.

One could use Meden directly for the SAR prob-
lem by repeatedly running the algorithm and changing
the weight of the returned edges to −∞. However, this
would not be very efficient. Mongiovì et al. [69] propose
NetSpot, which efficiently alternates between finding
a subgraph of high weight (for a fixed subinterval) and
finding a subinterval that maximizes the score (for a fixed
subgraph).

Finally, for EventTree+, in addition to using the GW
algorithm, Rozenshtein et al. [84] propose the following
heuristic. First, make a complete graph by putting an edge
(u, v) between every pair of nodes with weight equal to the
shortest distance between u and v in the original graph.
Then, starting with an empty solution S = ∅, we add a
node from V \S that decreases the MinGW objective the
most, and we repeat until the objective does not decrease
anymore.

Although some of the above methods provide qual-
ity guarantees if we relax the connectivity constraint [87],
[104], these bounds do not directly apply to the original
detection problem. In Table 2, we provide a summary of the
different methods for anomaly detection based on Steiner
connectivity.

C. Applications

The methods based on Steiner connectivity that we dis-
cussed above have been applied to a wide range of domains.
One notable advantage of these methods over other graph-
based approaches—such as the one in the next section—is
Õexibility of the discovered regions. Steiner connectivity
methods can discover connected anomalous subgraphs of
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arbitrary shape, in contrast with methods based on den-
sity or communities, which tend to Ônd only denser sub-
graphs of more uniform shape. This is especially important
in applications like biology and trafÔc congestion, where
the target subgraphs have elongated structure. Below, we
list some domains where the models that we presented
are popular.

• Transportation networks: Detecting trafÔc bottle-
necks in road or air networks using a parametric scan
statistic [9], and the HDS objective [20]. The Event-
Tree+ formulation has been used for identifying tour-
istic hot spots in urban settings [84].

• Water distribution networks: Detecting pollution and
spread of contaminant plumes using parametric scan
statistics [76], [90].

• Disease outbreak detection: Early detection of disease
outbreaks from information networks incorporating
data from hospital emergency visits, ambulance dis-
patch calls, and pharmacy sales of over-the-counter
drugs [90].

• Social science: Detection of crime hot spots in geo-
graphic networks using a parametric scan statistic [68];

detection and forecasting of societal events, such
as civil unrest, using nonparametric scan statistics
[28], [29].

• Image analysis: Detection of objects in images using a
method based on Steiner connectivity [50].

• Computer networks: Detection of viruses or worms
spreading from host to host in a computer network
[70]; intrusions in a computer network [56].

For a summary of the applications grouped by problem
formulation, see Table 3.

III . ANOMALY DETECTION BASED ON
DENSITY

In a static unweighted graph G(V,E), a subgraph induced by
a subset of nodes S ⊆ V is said to be dense if it has a “large”
number of edges. Many metrics that capture this informal
deÔnition have been proposed, but we focus on three in this
section. The density of a subgraph S ⊆ V is deÔned as

ρ(S) =
|E(S)|_____

(
|S|
2 )

.

Table 2 Algorithms for Anomaly Detection Based on Steiner Connectivity. n and m Are the Total Numbers of

Nodes and Edges in the Input Graph, Respectively; t Is the Number of Snapshots; d Is the Maximum Depth to

Explore; l Is the Number of Iterations (a Parameter); k Is the Effective Solution Size Parameter

Table 3 Applications of Anomaly Detection Based on Steiner Connectivity
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Here, vi ⋅vj is the inner product of the vectors, which
is a scalar. The semideÔnite and vector programs shown
above are equivalent. To see why, we can take a solution X
to the SDP and compute (approximately) the decomposition
X = VTV in polynomial time. Let vi be the ith column of V;
then, xij = vi ⋅vj, and the vi vectors are a feasible solution
to the vector program. Conversely, we can take a solution
to the vector program and construct a matrix V whose ith
column is vi. Let X = VTV; then, X is symmetric and positive
semideÔnite, and xij = vi ⋅vj, so X is a feasible solution to the
semideÔnite program.

SDPs are used to design approximation algorithms as fol-
lows. First, the target problem is formulated as a quadratic
program (QP), in which the variables are restricted to be
integers. However, quadratic programming is hard, so we
relax it to a semideÔnite program, which we can solve efÔ-
ciently. The core design challenge is rounding the variables
in the SDP to integer values, as required by the QP, in such
a way that we can claim an approximation guarantee on the
solution. Notice that this pipeline is analogous to the round-
ing of linear programs to obtain approximate solutions to
integer programs.

As a concrete example, we describe the algorithm of
Cadena et al. [24] for the GOQC problem. We start with
the following quadratic programming formulation for an
instance of GOQC with inputs G(V,E), w, and α

(QP) maximize ∑
(u,s)∈E

w (u, s) (
1 + xu x0 + xs x0 + xu xs______________

4 )

− ∑
u,s∈V,u≠s

α (u, s) (
1 + xu x0 + xs x0 + xu xs______________

4 )

subject to x0 ,xu ∈ {− 1, 1} ∀u ∈ V.

Here, each variable xu, except for x0, corresponds to
a node u ∈ V. It can be shown that the above program is
equivalent to the GOQC problem. Without loss of general-
ity, suppose x0 = 1, and let S be the set formed by the nodes
for which xu= 1 in the optimal solution to QP. Then, S is the
optimal solution for GOQC in the graph G.
Now, consider the semideÔnite relaxation of the problem

(SDP) maximize ∑
(u,s)∈E

w (u, s)(
1 + vu v0 + vs v0 + vu vs_____________

4 )

− ∑
u,s∈V,u≠s

α (u, s)(
1 + vu v0 + vs v0 + vu vs_____________

4 )

subject to vu ⋅vu = 1 ∀u ∈ V

v0 , vu ∈ ℝn+1 ∀u ∈ V.

After solving the SDP, the authors use the rounding
approach of [26] to Ônd a set S′as a solution to GOQC.
The authors then use a local search algorithm [98] to add
or remove nodes to S′until a local maxima is found. Their
Ônal solution is guaranteed to have objective value at least
O(logn) of the optimal, where n is the number of nodes.

Feige et al. [40] proposed SDP-based algorithms for the
densest-k subgraph problem. They developed a rounding
procedure that yields an approximation ratio of at least max
(k/2n,nϵ−1/3), which was improved to (k/n) in subsequent
work [39]. Finally, Rozenshtein et al. [84] reduced their
EventAllPairs+ problem to an (s, t)-MaxCut problem, which
can be solved using semideÔnite programming with a con-
stant approximation guarantee of 0.868.

3) Local Search Heuristic: In addition to the approxima-
tion algorithms discussed above, a local search heuristic has
been successfully applied to quasi-clique-related problems.
This heuristic starts with a candidate solution, usually a single
node or small sets of nodes, and then we add or remove nodes
to the solution until there is no improvement on the objective
score. This style of algorithm appears in the work of Abello
and Resende [1], Tsourakakis et al. [98], and Cadena et al.
[24]. As an example, we describe the local search procedure
for the OQC problem in Algorithm 2. Starting from a random
vertex, the algorithm adds nodes to the solution as long as the
objective score keeps increasing—b2 becomes false. Then, we
try to remove a node if it increases the score, and we repeat
until either there is no improvement—b1 becomes false—or
we reach a certain number of iterations Tmax. By changing
the stopping condition of the outer loop, we can obtain algo-
rithms for the problem formulations of Abello and Resende.

Algorithm 2 LocalSearchOQC(G = (V,E) ,α,Tmax)

C. Applications

We brieÕy mentioned some applications for each for-
mulation in Section III-B, but we summarize them here for
completeness. For a summary of the applications grouped
by problem formulation, see Table 4.

• Fraud detection in graphs: Hooi et al. [51] study the
problem of Ônding fraudulent users and products in
reviews. They propose a greedy algorithm FRAUDAR

to Ônd a subgraph S maximizing a notion of density
similar to the average degree. They show that this
method Ônds a fraudulent community in the Twitter
network.
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